Kamata, A. (2001) Item Analysis by the Hierarchical Generalized Linear Model. Journal of Educational Measurement, 38, 79-93.

Zhaowen Guo

University of Washington

Zhaowen Guo (UW)

Kamata (2001)

Paper Review

Table 1: Multilevel Structure in Item Responses

Item i	Person j
(Level 1)	(Level 2)
1	1
2	1
3	1
1	2
2	2
3	2

Image: A mathematical states of the state

3

Table 1: Multilevel Structure in Item Responses

Item i	Person j
(Level 1)	(Level 2)
1	1
2	1
3	1
1	2
2	2
3	2

• Repeated measures nested within each person

Kamata (2001)

æ

Table 1: Multilevel Structure in Item Responses

Item i	Person j
(Level 1)	(Level 2)
1	1
2	1
3	1
1	2
2	2
3	2

- Repeated measures nested within each person
- Interdependent item responses from the same person

Review of Rasch model

$$egin{aligned} & P_i(X_{ij} = 1 | heta_j, b_i) = rac{e^{(heta_j - b_i)}}{1 + e^{(heta_j - b_i)}} \ &= rac{1}{1 + e^{-(heta_j - b_i)}} \end{aligned}$$

where

$$\begin{split} & i = 1, ..., n \\ & j = 1, ..., k \\ & X_{ij} = \text{response of person j to item i (0 or 1)} \\ & \theta_j = \text{ability for person j} \\ & b_i = \text{difficulty for item i} \end{split}$$

Ξ.

Apply logit link function

$$log(\frac{p_{ij}}{1 - p_{ij}}) = \beta_{0j} + \beta_{1j}X_{1ij} + \dots \beta_{(k-1)j}X_{(k-1)ij}$$
$$= \beta_{0j} + \sum_{q=1}^{k-1} \beta_{qj}X_{qij}$$

where

q = 1,...,k-1 since the dummy variable for the reference item is dropped X_{ij} is the *i*th term dummy indicator for person j β_{0j} is an intercept term of the expected effect of the reference item for person j

 β_{qj} is the *difference* of effect for item q from β_{0j}

Apply logit link function

$$log(\frac{p_{ij}}{1 - p_{ij}}) = \beta_{0j} + \beta_{1j}X_{1ij} + \dots \beta_{(k-1)j}X_{(k-1)ij}$$
$$= \beta_{0j} + \sum_{q=1}^{k-1} \beta_{qj}X_{qij}$$

where

q = 1,...,k-1 since the dummy variable for the reference item is dropped X_{ij} is the *i*th term dummy indicator for person j β_{0j} is an intercept term of the expected effect of the reference item for person j

 β_{qj} is the *difference* of effect for item q from β_{0j}

Level-2 model (person level)

$$\beta_{0j} = \gamma_{00} + \frac{u_{0j}}{\beta_{1j}} = \gamma_{10}$$

$$\beta_{(k-1)j} = \gamma_{(k-1)0}$$

where $u_{0j} \sim N(0, \tau)$

• • • • • • • • • •

3

$$\beta_{0j} = \gamma_{00} + u_{0j}$$
$$\beta_{1j} = \gamma_{10}$$

$$\dots \\ \beta_{(k-1)j} = \gamma_{(k-1)0}$$

where $u_{0j} \sim N(0, \tau)$

The intercept β_{0j} is assumed to be varying (random) across persons because items answered by the same person are interdependent.

Combine level-1 and level-2 models

$$P_{ij} = \frac{1}{1 + exp\{-[u_{0j} - (-\gamma_{i0} - \gamma_{00})]\}}$$

Combine level-1 and level-2 models

$$P_{ij} = \frac{1}{1 + exp\{-[u_{0j} - (-\gamma_{i0} - \gamma_{00})]\}}$$

Mathematically equivalent to the Rasch model

$$egin{aligned} P_i(X_{ij} = 1 | heta_j, b_i) &= rac{1}{1 + e^{-(heta_j - b_i)}} \ &= rac{1}{1 + exp[-(heta_j - b_i)]} \end{aligned}$$

Kamata (2001)

Combine level-1 and level-2 models

$$P_{ij} = \frac{1}{1 + exp\{-[u_{0j} - (-\gamma_{i0} - \gamma_{00})]\}}$$

Mathematically equivalent to the Rasch model

$$egin{aligned} & P_i(X_{ij} = 1 | heta_j, b_i) = rac{1}{1 + e^{-(heta_j - b_i)}} \ &= rac{1}{1 + exp[-(heta_j - b_i)]} \end{aligned}$$

where

$$\theta_j = u_{0j}$$

$$b_i = -\gamma_{i0} - \gamma_{00}$$

Kamata (2001)

Level-2 model (person level)

 $\beta_{0jm} = \gamma_{00m} + u_{0jm}$ $\beta_{1jm} = \gamma_{10m}$

$$\dots \\ \beta_{(k-1)jm} = \gamma_{(k-1)0m}$$

where $u_{0jm} \sim N(r_{00m}, \tau_{\gamma})$

 u_{0jm} represents the extent to which the ability of person j in school m deviates from the mean ability within school m.

 $\gamma_{\rm 00\it\,m}$ is an effect of the reference item which varies across schools

Level-3 model (school level)

 $\gamma_{00m} = \pi_{000} + r_{00m}$ $\gamma_{10m} = \pi_{100}$ $\gamma_{20m} = \pi_{200}$...

$$\gamma_{(k-1)0m} = \pi_{(k-1)00}$$

where $r_{00m} \sim N(0, \tau_{\pi})$

Ξ.

Extend to three-level model

$$p_{ijm} = \frac{1}{1 + exp\{-[(r_{00m} + u_{0jm}) - (-\pi_{q00} - \pi_{000})]\}}$$

Compared to the Rasch model

•
$$-\pi_{q00} - \pi_{000}$$
 represents item difficulty for item i for i = q (i=1,...,k-1)

Image: A match a ma

æ

Extend to three-level model

$$p_{ijm} = \frac{1}{1 + exp\{-[(r_{00m} + u_{0jm}) - (-\pi_{q00} - \pi_{000})]\}}$$

Compared to the Rasch model

- $-\pi_{q00} \pi_{000}$ represents item difficulty for item i for i = q (i=1,...,k-1)
- $r_{00m} + u_{0jm}$ represents the ability for person j in school m

Extend to three-level model

$$p_{ijm} = \frac{1}{1 + exp\{-[(r_{00m} + u_{0jm}) - (-\pi_{q00} - \pi_{000})]\}}$$

Compared to the Rasch model

- $-\pi_{q00} \pi_{000}$ represents item difficulty for item i for i = q (i=1,...,k-1)
- $r_{00m} + u_{0jm}$ represents the ability for person j in school m
 - r_{00m} is the random effect associated with school m, interpreted as the average ability of students in school m
 - u_{0jm} is a person-specific ability of person j in school m, interpreted as the extent to which ability of person j deviated from the average ability of students in school m

Application: LSAT dataset

Steps

- Add one additional variable to represent person ID
- Reshape data from wide to long format

Application: LSAT dataset

Steps

- Add one additional variable to represent person ID
- Reshape data from wide to long format

Table 2: Original data (wide)

Q1	Q2	Q3	Q4	Q5
0	0	0	0	0
0	1	0	0	1

Application: LSAT dataset

Steps

- Add one additional variable to represent person ID
- Reshape data from wide to long format

Table 2: Original data (wide)

Q1	Q2	Q3	Q4	Q5
0	0	0	0	0
0	1	0	0	1

Table 3: Reshaped data (long)

ID	ltem	Response
1	Q1	0
1	Q2	0
1	Q3	0
1	Q4	0
1	Q5	0
2	Q1	0
2	Q2	1
2	Q3	0
2	Q4	0
2	Q5	1

Table 4: Comparison of Item Parameters Estimated by Rasch and MLM

Itoma	Rasch	HGLM
Ttems	(mirt)	(Ime4)
Q1	-2.73	2.71
Q2	-1.00	0.99
Q3	-0.24	0.24
Q4	-1.31	1.30
Q5	-2.10	2.08

Notes

- item parameter b estimated via mirt denotes item difficulty
- fixed effect estimated via lme4 denotes item easiness $(b_i = -\gamma_{i0} \gamma_{00})$